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Proof: Since P,<(w) = (2b),,F(-n, b; 2b; 1 - w) and (2b), # 0, we require the
values of w for which P,,(w) = 0. By Lemma 1, P,I(w) = 0 if and only if

d'l

1d ((-wA)(1 - A))b = 0 when A = 0.
dA

By Lemma 3, the values of A for which the n-th derivative is zero all lie on the
perpendicular bisector of the line segment joining the points A = w-1 and A = 1.
(Note that w # 1, since Pn(l) = (2b)n #k 0.) Thus if Pn(w) = 0, then the point A = 0
lies on this peipendicular bisector, that is, w-I and 1 are equidistant firom 0, so

Iwl= 1.
A relationship between the zeros of rJ1(x) and those of P,,(w) can be found

using similarity. For each zero ax. of rJ(x), the triangle with vertices axj, i, -i in
the x-plane is similar to the triangle with vertices 0, wj-1, 1 respectively, in the
A-plane. It follows easily that wj = (aj + i)/(a1. - i), a familiar Mobius transfor-
mation from the real line to the unit circle.
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Recounting the Rationals

Neil Calkin and Herbert S. Wilf

It is well known (indeed, as Paul Erdos might have said, every child knows) that
the rationals are countable. However, the standard presentations of this fact do
not give an explicit enumeration; rather they show how to construct an enumera-
tion. In this note we explicitly describe a sequence b(n) with the property that
every positive rational appears exactly once as b(n)/b(n + 1). Moreover, b(n) is
the solution of a quite natural counting problem.

Our list of the positive rational numbers begins like this:

1 1 2 1 3 2 3 1 4 3 5 2 5 3 4 1 5 4 7 3 8 5 7 2 7
1'2' 1' 3' 2' 3' 1'4'3' 5' 2' 5' 3'4' 1'5' 4' 7' 3' 8'5'7'2'7'5'
Some of the interesting features of this list are

1. The denominator of each fraction is the numerator of the next one. That
means that the nth rational number in the list looks like b(n)/b(n + 1)
(n = 0, 1, 2, ... ), where b is a certain function of the nonnegative integers
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whose values are

fb(n)),l0 = {1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,1,5,4,7,...}.
2. The function values b(n) actually count something nice. In fact, b(n) is the

number of ways of writing the integer n as a sum of powers of 2, each power
being used at most twice (i.e., once more than the legal limit for binary
expansions). For instance, we can write 5 = 4 + 1 = 2 + 2 + 1, so there
are two such ways to write 5, and therefore b(5) = 2. Let's say that b(n) is
the number of hyperbinary representations of the integer n.

3. Consecutive values of this function b are always relatively prime, so that
each rational occurs in reduced form when it occurs.

4. Every positive rational occurs once and only once in this list.

1 The tree of fractions. For the moment, let's forget about enumeration, and just
imagine that fractions grow on the tree that is completely described, inductively, by
the following two rules:

Figure 1. The tree of fractions

* 1is at the top of the tree, and

* Each vertex . has two children: its left child is and its right child is +I i? IJJ
We show the following properties of this tree.

1. The numerator and denominator at each vertex are relatively prime. This is
certainly true at the top vertex. Otherwise, suppose r/s is a vertex on the
highest possible level of the tree for which this is false. If r/s is a left child,
then its parent is r/(s - r), which would clearly also not be a reduced
fraction, and would be on a higher level, a contradiction. If r/s is a right
child, then its parent is (r - s)/s, which leads to the same contradiction. U

2. Every reduced positive rational number occurs at some vertex. The rational
number 1 certainly occurs. Otherwise, let r/s be, among all fractions that
do not occur, one of smallest denominator, and among those the one of
smallest numerator. If r > s then (r - s)/s doesn't occur either, else one of
its children would be r/s, and its numerator is smaller, the denominator
being the same, a contradiction. If r < s, then r/(s - r) doesn't occur
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either, else one of its children would be r/s, and it has a smaller denomina-tor, a contradiction. U
3. No reduced positive rational number occurs at more than one vertex. First, the

rational number 1 occurs only at the top vertex of the tree, for if not, it
would be a child of some vertex r/s. But the children of r/s are r/(r + s)
and (r + s)/s, neither of which can be 1. Otherwise, among all reduced
rationals that occur more than once, let r/s have the smallest denominator,
and among these, the smallest numerator. If r < s then r/s is a left child of
two distinct vertices, at both of which r/(s - r) lives, contradicting the
minimality of the denominator. The case r > s is similar. U

It follows that a list of all positive rational numbers, each appearing once and
only once, can be made by writing down 1/1, then the fractions on the level just
below the top of the tree, reading from left to right, then the fractions on the next
level down, reading from left to right, etc.

We claim that if that be done, then the denominator of each fraction is the
numerator of its successor. This is clear if the fraction is a left child and its
successor is the right child of the same parent. If the fraction is a right child then
its denominator is the same as the denominator of its parent and the numerator of
its successor is the same as the numerator of the parent of its successor, hence the
result follows by downward induction on the levels of the tree. Finally, the
rightmost vertex of each row has denominator 1, as does the leftmost vertex of the
next row, proving the claim.

Thus, after we make a single sequence of the rationals by reading the successive
rows of the tree as described above, the list will be in the form {f(n)/f(n + 1)}n > ?0
for some f.

Now, as the fractions sit in the tree, the two children of f(n)/f(n + 1) are
f(2n + 1)/f(2n + 2) and f(2n + 2)/f(2n + 3). Hence from the rule of construc-
tion of the children of a parent, it must be that

f(2n +1)=f(n) and f(2n+2)=f(n)+f(n+1) (n=O,1,2,...).
These recurrences, together with f(O) = 1, evidently determine our function f on
all nonnegative integers.

We claim that f(n) = b(n), the number of hyperbinary representations of n, for
all n ? 0.

This is true for n = 0, and suppose it is true for all integers 0, 1, . , 2n. Now
b(2n + 1) = b(n), because if we are given a hyperbinary expansion of 2n + 1, the
"1" must appear, hence by subtracting 1 from both sides and dividing by 2, we'll
get a hyperbinary representation of n. Conversely, given such an expansion of n,
double each part and add a 1 to obtain a representation of 2n + 1.

Furthermore, b(2n + 2) = b(n) + b(n + 1), for a hyperbinary expansion of
2n + 2 might have either two l's or no l's in it. If it has two l's, then by deleting
them and dividing by 2 we obtain an expansion of n. If it has no l's, then we just
divide by 2 to get an expansion of n + 1. These maps are reversible, proving the
claim.

It follows that b(n) and f(n) satisfy the same recurrence formulas and take the
same initial values, hence they agree for all nonnegative integers. We state the
final result as follows.

Theorem 1. The nth rational number, in reduced form, can be taken to be b(n)/
b(n + 1), where b(n) is the number of hyperbinary representations of the integer n, for
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n = 0, 1, 2 .. That is, b(n) and b(n + 1) are relatively prime, and each positive
reduced rational number occurs once and only once in the list b(O)/b(1), b(1)/b(2), . . .

Remarks. There is a large literature on the closely related subject of Stern-Brocot
trees [1], [6]. In particular, an excellent introduction is in [2], and the relationship
between these trees and hyperbinary partitions is explored in [4]. Our sequence
{b(n)} is sequence #A002487 in [5]. We thank Neil Sloane for pointing out that
still other ways of counting the rationals are in his sequences #A038568 and
#A020651. Our interest in {b(n)} was piqued by a problem in Quantum, in
September 1997, that asked for b(90316), and which was posted by Stan Wagon as
his "Problem of the Week".

In Stern's original paper [6] of 1858 there is a structure that is essentially our
tree of fractions, though in a different garb, and he proved that every rational
number occurs once and only once, in reduced form. However Stern did not deal
with the partition function b(n). Reznick [4] studied restricted binary partition
functions and observed their relationship to Stern's sequence. Nonetheless it
seemed to us worthwhile to draw these two aspects together and explicitly note
that the ratios of successive values of the partition function b(n) run through all of
the rationals.

A question: What other functions f(n) are there that have natural and intuitive
definitions and also have the property that {f(n)/f(n + 1)} takes every rational
value exactly once?
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